

Improving Video Captioning with Temporal Composition of a Visual-Syntactic Embedding

Jesus Perez-Martin, Benjamin Bustos, Jorge Pérez, Juan M. Barrios

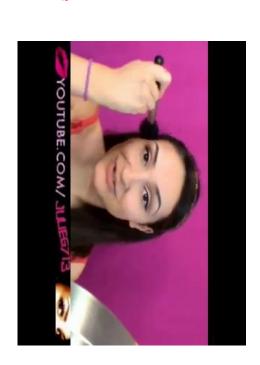
TRECVID 2020 Workshop 2020-12-08

Problem: Video Captioning

Possible captions:

- the men are fighting using martial arts. men are doing martial arts.
- the men are doing martial arts together in the

- a woman is applying makeup on her face
- a young lady is doing makeup on her face
- a girl applying blush on her face



object1 object2 action

- 275. a woman and a child swim in a pool...
- 560. ... a man and a dog ... sitting at the top of the tree...
- 690. a man and a pig are walking along a sidewalk at daytime.
- 1100. a woman and a man driving in a car
- 1354. a man and a woman ... hold a microphone
- 1677. a man and a woman sitting in a radio studio are shown.
- 1883. a man and a young girl riding a marry-go-round
- 2041. A Spanish-speaking man and a Spanish-speaking woman argue a TV split screen...
- 2215. A big dog and a small dog sharing a bone
- 2632. A young man and a woman brush their teeth in a bathroom.
- 2769. A young man and a woman are kissing, in a room.
- 2785. A woman and a boy are watching a video...

object1

object2

action

object3

275. a woman and a child swim in a pool...

- **560.** ... a man and a dog ... sitting at the top of the tree..
- 690. a man and a pig are walking along a sidewalk at daytime.
- 1100. a woman and a man driving in a car
- 1354. a man and a woman ... hold a microphone
- 1677. a man and a woman sitting in a radio studio are shown.
- 1883. a man and a young girl riding a marry-go-round
- 2041. A Spanish-speaking man and a Spanish-speaking woman argue a TV split screen...
- 2215. A big dog and a small dog sharing a bone
- 2632. A young man and a woman brush their teeth in a bathroom.
- 2769. A young man and a woman are kissing, in a room.
- 2785. A woman and a boy are watching a video...

object1

object2

action

- 275. a woman and a child swim in a pool...
- 560. ... a man and a dog ... sitting at the top of the tree..
- <u>690. a man and a pig are walking along a sidewalk at daytime.</u>
- 1100. a woman and a man driving in a car
- 1354. a man and a woman ... hold a microphone
- 1677. a man and a woman sitting in a radio studio are shown.
- 1883. a man and a young girl riding a marry-go-round
- 2041. A Spanish-speaking man and a Spanish-speaking woman argue a TV split screen...
- 2215. A big dog and a small dog sharing a bone
- 2632. A young man and a woman brush their teeth in a bathroom.
- 2769. A young man and a woman are kissing, in a room.
- 2785. A woman and a boy are watching a video...

object1

object2

action

object3

- 275. a woman and a child swim in a pool...
- 560. ... a man and a dog ... sitting at the top of the tree...
- 690. a man and a pig are walking along a sidewalk at daytime.
- 1100. a woman and a man driving in a car
- 1354. a man and a woman ... hold a microphone
- 1677. a man and a woman sitting in a radio studio are shown.
- 1883. a man and a young girl riding a marry-go-round
- <u> 2041. A Spanish-speaking man and a Spanish-speaking woman argue a TV split screen...</u>
- 2215. A big dog and a small dog sharing a bone
- 2632. A young man and a woman brush their teeth in a bathroom.
- 2769. A young man and a woman are kissing, in a room.
- 2785. A woman and a boy are watching a video...

object1

object2

action

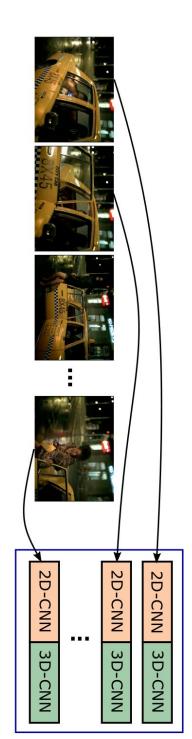
object3

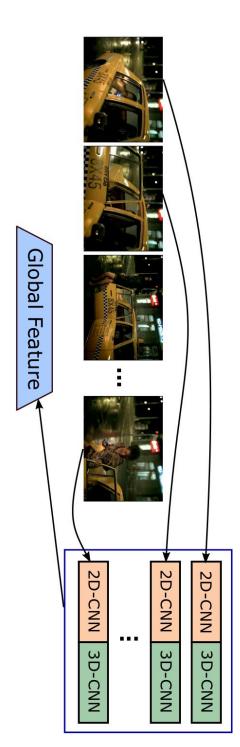
- 275. a woman and a child swim in a pool...
- 560. ... a man and a dog ... sitting at the top of the tree...
- 690. a man and a pig are walking along a sidewalk at daytime.
- 1100. a woman and a man driving in a car
- 1354. a man and a woman ... hold a microphone
- 1677. a man and a woman sitting in a radio studio are shown.
- 1883. a man and a young girl riding a marry-go-round
- 2215. A big dog and a small dog sharing a bone 2041. A Spanish-speaking man and a Spanish-speaking woman argue a TV split screen...
- 2632. A young man and a woman brush their teeth in a bathroom.
- 2769. A young man and a woman are kissing, in a room.

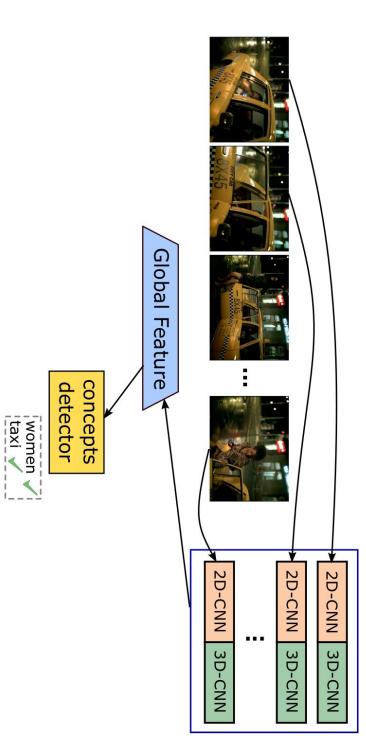
2785. A woman and a boy are watching a video...

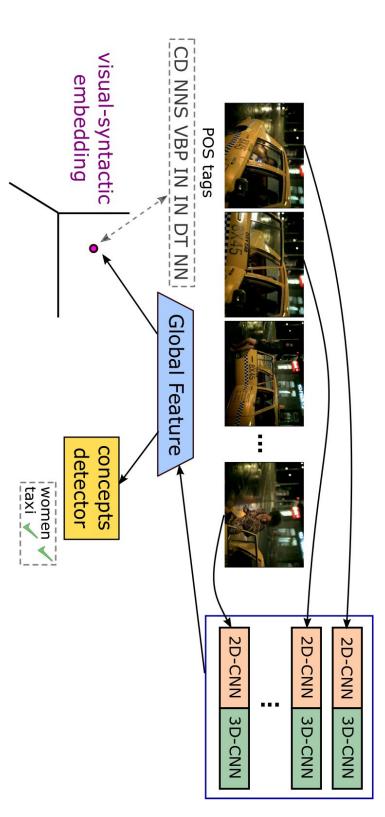
Video Captioning with Visual-Syntactic Embedding

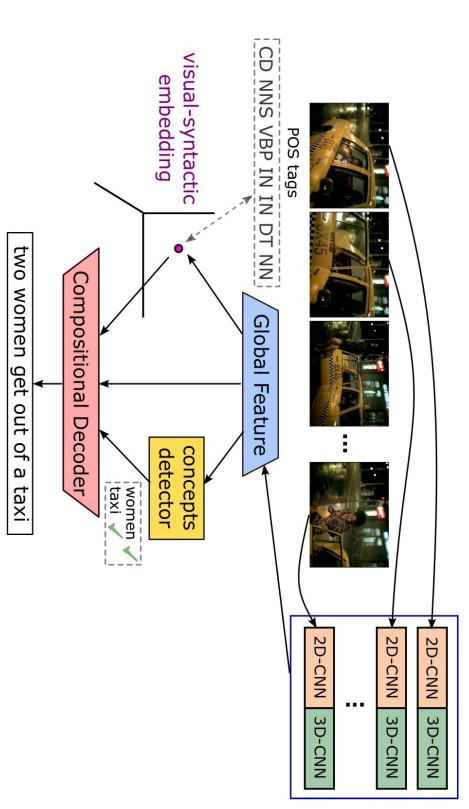
- can be directly extracted from a video Cues about the syntactic structure of the video's descriptions
- which harms their performance on standard datasets Existing models often produce syntactically incorrect sentences











Visual-Syntactic Embedding

the men are fighting using martial arts

positive example

negative example

a woman is applying makeup on her face

Visual-Syntactic Embedding

the men are fighting using martial arts

positive example

 $\mathsf{ample} \quad \bigvee \mathsf{POS} \; \mathsf{tagging}$

DT NNS VBP VBG VBG JJ NNS

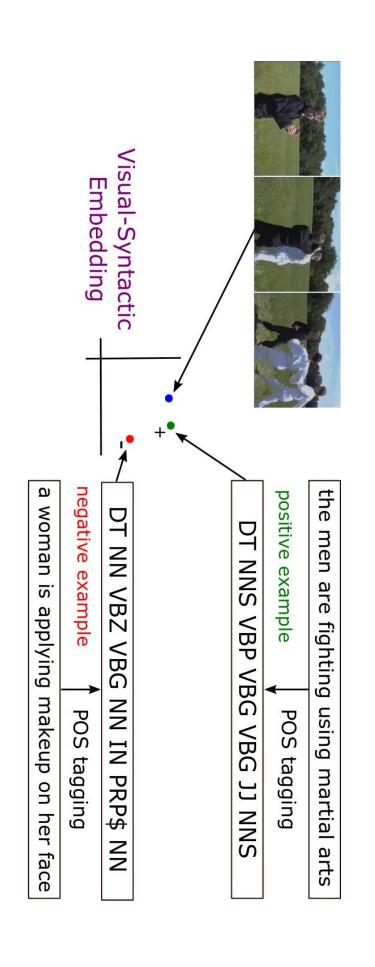
DT NN VBZ VBG NN IN PRP\$ NN

negative example

POS tagging

a woman is applying makeup on her face

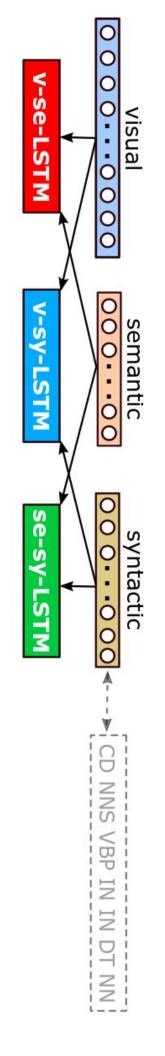
Visual-Syntactic Embedding

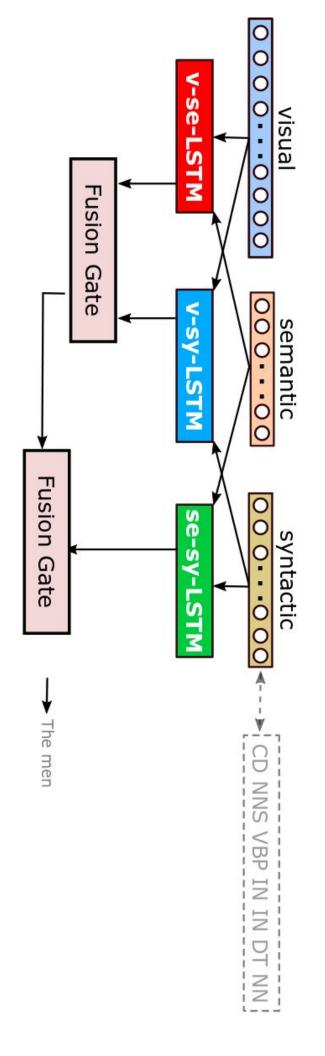


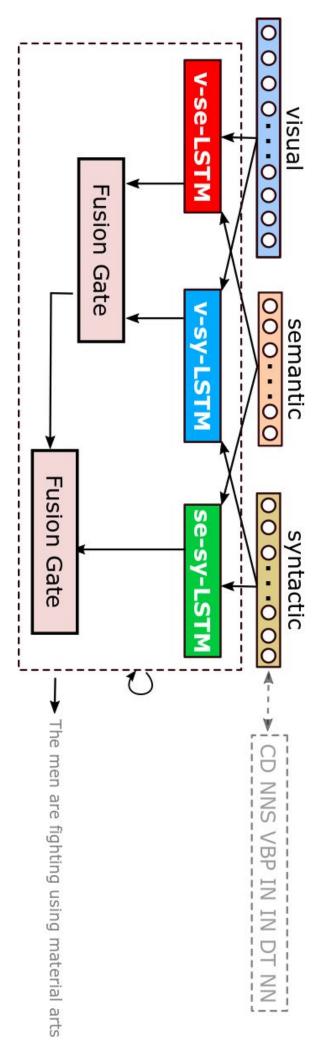
semantic 000---00

syntactic

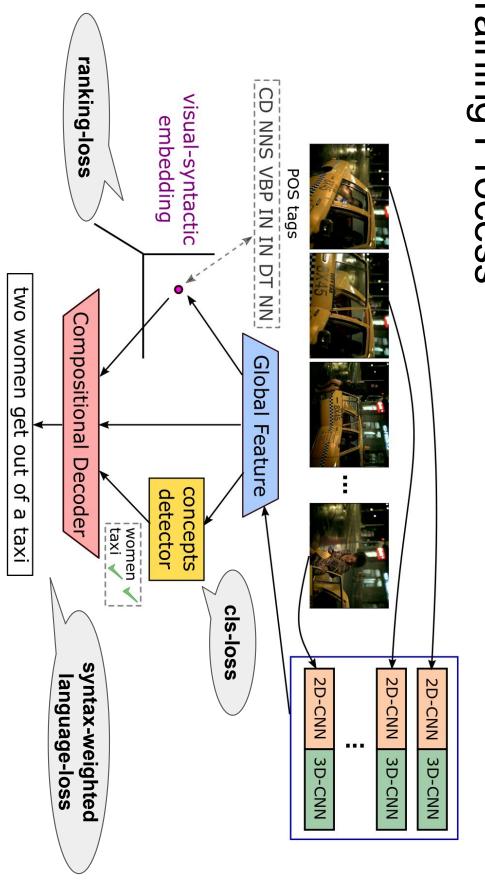
000--000 <---> CD NNS VBP IN IN DT NN







Training Process



Syntax-Weighted Loss

tagging t of the generated description, we define the weight Given a video x, the ground-truth caption $y=(y_1,y_2,\ldots,y_L)$ of x, and the POS

$$w = \max \{1, L^{\beta} - \left(\operatorname{dist}\left(\phi(\rho(x)), \omega(t)\right) + 1\right)^{\gamma}\},\$$

and we minimize

$$\mathcal{L}_{\theta} = -\frac{1}{w} \sum_{i=1}^{L} \log p_{\theta}(y_i | y_{z < i})$$

Experiments - Datasets and Setup

MSVD

1,970 videos

1,200 train

100 validation

670 test

~ 40 captions per video

~ 6K words vocabulary

MSR-VTT

10,000 videos

6,512 train

498 validation

2,990 test

~ 20 captions per video

~ 14K words vocabulary

TRECVID 2020

9,185 videos

7,485 train

1,700 test

2 ~ 5 captions per video

~ 11K words vocabulary

Experiments - Datasets and Setup

MSVD

1,970 videos

1,200 train

100 validation

670 test

~ 40 captions per video

~ 6K words vocabulary

MSR-VTT

10,000 videos

6,512 train

498 validation

2,990 test

~ 20 captions per video

~ 14K words vocabulary

TRECVID 2020

9,185 videos

7,485 train

1,700 test

2 ~ 5 captions per video

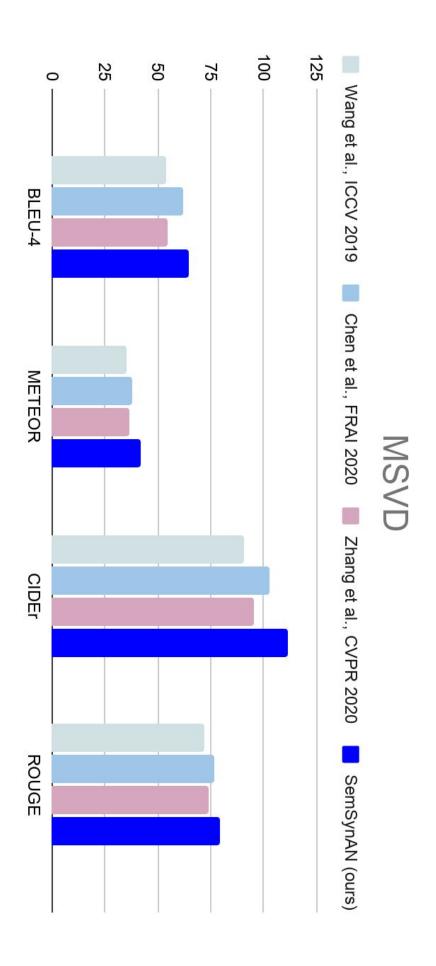
~ 11K words vocabulary

Visual Features:

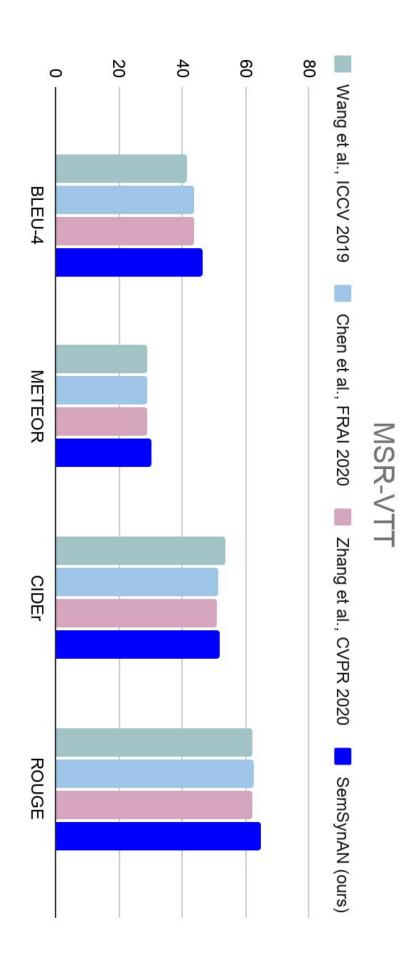
2D-CNN: ResNet-152 pre-trained on ImageNet

3D-CNN: ECO and R(2+1)D, both pre-trained on Kinetics-400

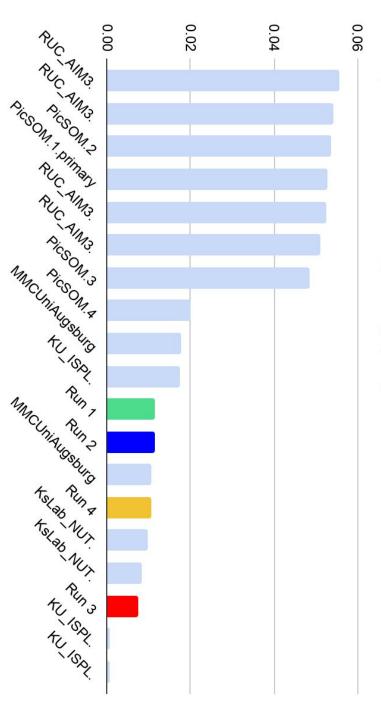
Results - Comparison with State of the Art



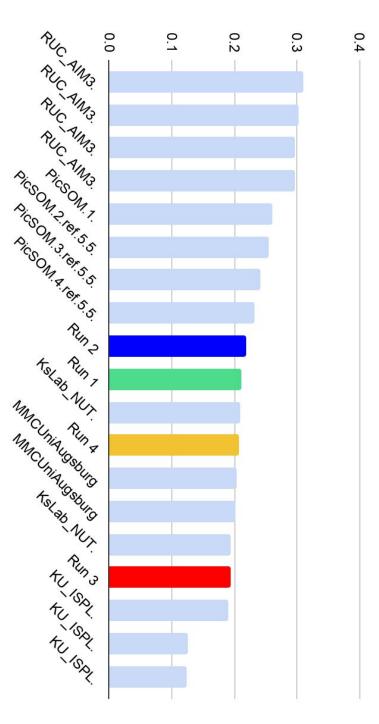
Results - Comparison with State of the Art



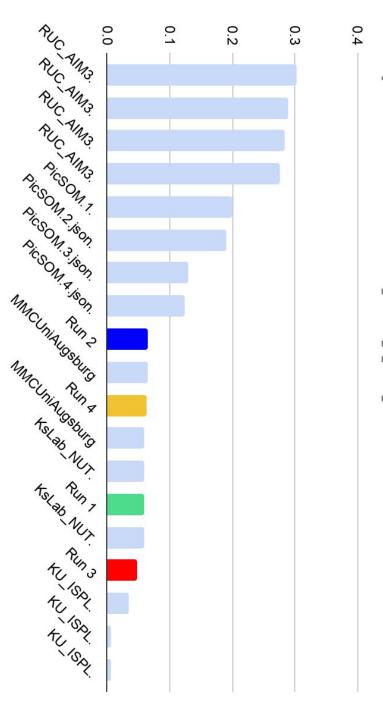
· •	3 MSF	2 MSF	1 MSR	Run
4 MSRVTT + VTT20	3 MSRVTT + VTT20 (80%) + VATEX	2 MSRVTT + VTT20	MSRVTT + VTT20 (80%)	Training Dataset
ı	VTT20(20%)	1	VTT20(20%)	Validation
46	ω	29	40	epochs
0.0105	0.0075	0.0113	0.0115	epochs BLEU-4
0.2071	0.1938	0.2187	0.2105	METEOR
0.124	0.087	0.136	0.125	CIDEr
0.062	0.047	0.065	0.06	CIDEr-D
0.055	0.04	0.06	0.057	SPICE



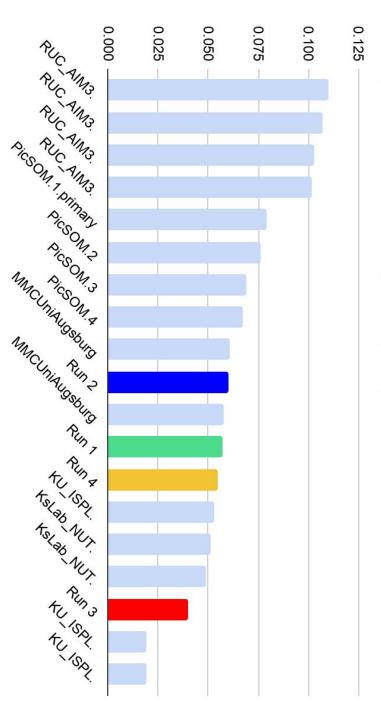
Comparison: METEOR - [9/19] [3/6]



Comparison: CIDEr-D - [9/19] [3/6]



Comparison: SPICE - [10/19] [4/6]



Qualitative Analysis: MSVD

Ours: a woman is applying makeup on her face

NN IN PRP\$ NN

GT1: a woman is applying makeup on her face

GT2: a woman is powdering her face

w/o syntactic representation: a woman is applying eye shadow

Qualitative Analysis: MSVD

Ours: a man is pouring salsa into a bowl

NN IN DT NN

GT1: a man is putting food on a plate

GT2: the man is pouring salsa over the pasta

w/o syntactic representation: a man is pouring sauce over spaghetti sauce over spaghetti sauce

Qualitative Analysis: MSVD

Ours: a man and woman are riding a motorcycle

DT NN CC NN VBP VBG DT NN

G71: a man and woman are riding a motorcycle

GT2: a man and a woman are riding a motorcycle

w/o syntactic representation: a man is riding a motorcycle

Conclusions and Work Plan for TRECVID 2021

- Paying more attention to syntax improves the quality of descriptions.
- Controlling the semantic meaning and syntactic structure of words in the sentence generated captions guarantees the contextual relation between the

visual content. learning to relate syntactic information to a graph-based representation of As **feature work**, we consider to Improve visual-syntactic embedding by

Improving Video Captioning with Visual-Syntactic Embedding Temporal Composition of a

jeperez@dcc.uchile.cl

https://github.com/jssprz/visual_syntactic_embedding_video_captioning Code/Features/Models available on GitHub

